Prequise Test

Exercice 1:

In an orthonormal reference frame be (O, \vec{i} , \vec{j} , \vec{k}), we consider three vectors

$$\overrightarrow{U} = \overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}$$
 , $\overrightarrow{V} = 2\overrightarrow{i} - \overrightarrow{j} + 2\overrightarrow{k}$, $\overrightarrow{W} = -2\overrightarrow{k}$

- 1. Draw the three vectors \overrightarrow{U} , \overrightarrow{V} and \overrightarrow{W}
- 2. Calculate the magnitudes $\|\overrightarrow{U}\|$, $\|\overrightarrow{V}\|$ and $\|\overrightarrow{W}\|$
- 3. Determine the components of the unit vector \overrightarrow{u} carried by \overrightarrow{U}
- 4. Graphically give the vector $(\overrightarrow{U} \overrightarrow{V})$ and calculate its modulus.
- 5. Calculate:
 - a) The scalar product \overrightarrow{U} . \overrightarrow{V}
 - b) The cross (vectorial) product $\overrightarrow{U} \wedge \overrightarrow{V}$
 - c) The double cross product $(\overrightarrow{U} \wedge \overrightarrow{V}) \wedge \overrightarrow{W}$
 - d) The mix product ($\overrightarrow{V} \wedge \overrightarrow{W}$). \overrightarrow{U}
 - e) Determine the angle between \overrightarrow{U} and \overrightarrow{V}

Exercice 2:

Let the scalar field be $f(x, y, z) = 3x^2y + y^2z^2$ and the vectorial field given by :

$$\vec{V}(x, y, z) = xz^2 \vec{i} + (2x^2 - y) \vec{j} + yz^2 \vec{k}$$

Calculate:

$$\overrightarrow{grad}$$
 (f)

$$\operatorname{div}\left(\overrightarrow{V}\right)$$

$$\overrightarrow{curl}$$
 (\overrightarrow{V}) $(\overrightarrow{rot}$ $(\overrightarrow{V}))$