Prequise Test ## **Exercice 1:** In an orthonormal reference frame be (O, \vec{i} , \vec{j} , \vec{k}), we consider three vectors $$\overrightarrow{U} = \overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}$$, $\overrightarrow{V} = 2\overrightarrow{i} - \overrightarrow{j} + 2\overrightarrow{k}$, $\overrightarrow{W} = -2\overrightarrow{k}$ - 1. Draw the three vectors \overrightarrow{U} , \overrightarrow{V} and \overrightarrow{W} - 2. Calculate the magnitudes $\|\overrightarrow{U}\|$, $\|\overrightarrow{V}\|$ and $\|\overrightarrow{W}\|$ - 3. Determine the components of the unit vector \overrightarrow{u} carried by \overrightarrow{U} - 4. Graphically give the vector $(\overrightarrow{U} \overrightarrow{V})$ and calculate its modulus. - 5. Calculate: - a) The scalar product \overrightarrow{U} . \overrightarrow{V} - b) The cross (vectorial) product $\overrightarrow{U} \wedge \overrightarrow{V}$ - c) The double cross product $(\overrightarrow{U} \wedge \overrightarrow{V}) \wedge \overrightarrow{W}$ - d) The mix product ($\overrightarrow{V} \wedge \overrightarrow{W}$). \overrightarrow{U} - e) Determine the angle between \overrightarrow{U} and \overrightarrow{V} ## **Exercice 2:** Let the scalar field be $f(x, y, z) = 3x^2y + y^2z^2$ and the vectorial field given by : $$\vec{V}(x, y, z) = xz^2 \vec{i} + (2x^2 - y) \vec{j} + yz^2 \vec{k}$$ Calculate: $$\overrightarrow{grad}$$ (f) $$\operatorname{div}\left(\overrightarrow{V}\right)$$ $$\overrightarrow{curl}$$ (\overrightarrow{V}) $(\overrightarrow{rot}$ $(\overrightarrow{V}))$