VI Finale Test

1. Final test

Course question

1.Define the electrostatic dipole. Represent the dipole moment (draw a diagram).

Exercise 01

Consider an isosceles right triangle ABC with equal sides (a) and three charges $q_A = -q$, $q_B = +q$ and $q_C = +q$ situated at points A, B and C respectively

- . We give : $q = 1\mu C$. a = 1cm
- Represent graphically all the forces exercised by the three charges (without calculating them)
- 2. Calculate the electric field E and the potential V created by the charges on A
- 3. Deduce the force exercised on the charge situated at point A
- 4. Calculate the potential energy of q_A at point A

Exercise 02

A linear charge λ is distributed uniformly on a ring-shaped wire³ of radius⁴ R. (figure opposite).

1-Calculate the electric field produced by the wire⁵ at point M located on the axis OX at a distance x from center W.

2- Calculate the electric potential created by ring-shaped wire of radius *R*

Exercise 03

Consider a spherical cavity⁶ of radius \boldsymbol{a} at the center of a sphere non-conductive, center \boldsymbol{O} and radius \boldsymbol{A} . The rest of the sphere has a volume density of positive charge and uniform $\boldsymbol{\rho}$

1. Determine the electric field created at any point M(r) in space:

$$r < a, a < r < R \ and \ r > R.$$

2. Deduce the electrostatic potential at any point M(r) in space:

$$r < a, a < r < R \ and \ r > R$$
, knowing that $V \ (r \to \infty) = 0$. the vertices المعين / diamond² خيط على شكل ring-shaped wire خيط على شكل خيط spherical cavity محوفة مجوفة محالية محالية محالية المحالية المحالية محالية محالية المحالية ال

